#BIOLOGÍA Y BIOMEDICINA #Biotecnología #Medicamentos

Crean un hidrogel que permite cultivar células neurales para reparar lesiones medulares

El biomaterial desarrollado por el ICMM-CSIC se combina con campos magnéticos para crear una matriz que permitirá la colonización por células neurales de las zonas dañadas de la médula espinal

Fecha de noticia:

El Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ha logrado desarrollar hidrogeles que permiten el cultivo celular bajo campos magnéticos alternos de alta frecuencia, un avance en la búsqueda de nuevas terapias para curar las lesiones de la médula espinal. El trabajo, publicado en la revista Acta Biomaterialia y financiado por el programa Pathfinder de la Unión Europea, permitirá incorporar nanopartículas que transporten nanomedicinas a la zona dañada para desarrollar terapias más precisas.

"El reto es desarrollar una matriz terapéutica tridimensional que sea biocompatible y biomimética con la médula espinal", explica Concepción Serrano, investigadora del ICMM-CSIC y autora principal del trabajo. La importancia de lograr esta matriz es la base de su proyecto de investigación, que busca curar la lesión medular mediante la inserción de un biomaterial en la zona dañada de la médula que emita señales que hagan que la zona sana se expanda y colonice el hueco causado por el daño. "Esto no lo ha conseguido nadie hasta ahora", menciona Serrano.

La investigadora lo explica: "No podemos pretender que crezcan neuronas sin un soporte físico y químico que guíe su crecimiento. Esto implica que el biomaterial que desarrollemos sea mecánicamente compatible con la médula espinal, algo a lo que se ha prestado muy poca atención hasta la fecha". Para ello han explorado el colágeno, una proteína muy abundante dentro del cuerpo de los mamíferos y que, además, favorece el crecimiento de vasos sanguíneos. "Como es parte del cuerpo, va a ser biocompatible, biodegradable y buen soporte mecánico, así como reservorio de moléculas portadoras de mensajes reparadores", añade Serrano.

El resultado ha sido una espuma muy suave y, por lo tanto, compatible: "La médula espinal tiene una elasticidad de unos 600 pascales, y nosotros hemos conseguido que nuestra espuma sea sólo unas 4 veces más rígida. Por ponerlo en contexto, la mayor parte de los biomateriales explorados hasta la fecha eran del orden de 50 a 200 veces más rígidos, por lo que estamos mucho más cerca del éxito en este aspecto. De hecho, hemos observado que ya estamos en un rango que la médula espinal tolera sin generar fuerzas de fricción generadoras de cicatrices indeseadas".

El aspecto innovador de esta investigación va más allá, ya que explora este material para el tratamiento de la lesión medular, hace que responda al campo magnético y que, además, incorpora nanotransportadores que podrán llevar las terapias (nanomedicinas) donde se necesiten. "Hemos usado nanopartículas de óxido de hierro que, además, hemos recubierto con polímeros naturales para que sean aún más biocompatibles en la interacción con las células", explica Serrano. Los polímeros elegidos han sido el ácido hialurónico y el quitosano, un derivado de la quitina que, además, tiene propiedades bactericidas y neuroprotectoras, y cuya producción es "muy sencilla y barata". De hecho, el estudio ya ha podido concluir que este último polímero parece más favorable al cultivo de células neurales.

Estos hidrogeles ya se han implantado en un modelo animal de rata, por lo que los siguientes pasos de esta investigación pasan por analizar si cumplen su cometido dentro del organismo implantado y, a la vez, funcionalizar las nanopartículas para que ejerzan como trasportadoras de nanomedicinas. "Hemos conseguido elaborar esas matrices magnéticas, caracterizarlas bien, y ver qué pasa si las ponemos en contacto con cultivos de neuronas, que será lo que encuentren al ser implantadas", resume Serrano, que destaca que ya han podido comprobar cómo "las neuronas crecen sin problema y crean redes altamente interconectadas".

ICMM - CSIC Comunicación

comunicacion@csic.es

 

Referencia científica:

Julia Martínez-Ramírez, Marta Toldos-Torres, Esther Benayas, Natalia Villar-Gómez, Laura Fernández-Méndez, Francisco M. Espinosa, Ricardo García, Sabino Veintemillas-Verdaguer, María del Puerto Morales, María Concepción Serrano. Hybrid hydrogels support neural cell culture development under magnetic actuation at high frequencyActa Biomaterialia. DOI: https://doi.org/10.1016/j.actbio.2024.01.030