

Technology Offer

CSIC/JB/002

New high-performance catalyst for multi-cycle fixed-bed steam reforming of glycerol

Novel nickel-based catalyst that offers long-lasting catalytic activity under high temperature exposure and high efficiency for multi-cycle glycerol reforming processes.

Intellectual Property

PCT application filed

Stage of development

TRL 4-5

Intended Collaboration

Licensing and/or codevelopment

Contact

José Barranco Riveros

Vice-presidency for Innovation and Transfer

j.barranco@csic.es comercializacion@csic.es

Market need

The production of hydrogen from glycerol steam reforming is promising, as glycerol is a byproduct of biodiesel production. However, most commercial nickel-based catalysts supported on CeO_2 and MgO, among others and used for long-term steam reforming within an optimal temperature window, generate methane as a byproduct, reducing the efficiency of H_2 production. Moreover, these catalysts are not stable at 900 °C, the temperature required for multi-cycle reforming processes, which is known to offer the most efficient reaction pathway for H_2 production. Therefore, a nickel-based glycerol steam reforming catalyst is required that exhibits high catalytic performance as well as high redox and thermal stability under multicycle reforming operating conditions.

Proposed solution

To meet this demand, a new high-performance nickel-based catalyst with high thermal and redox stability is suggested. This highly efficient catalyst is distinguished by its high performance in multi-cycle reforming processes, where high temperatures are achieved and the creation of by-products is prevented facilitating catalytic reforming at an industrial level and improving the mass production of hydrogen. The mixed oxide supports of MgO-Al₂O₃ or MgO-Al₂O₃-CeO₂ used have a specific surface area of at least 45 m²/g, which can be increased by means of treatment at high temperatures.

Competitive advantages

- Catalyst with high tunable catalytic surface.
- Great resistance to high temperatures and great redox stability.
- Works under mullti-cycle operating conditions, avoiding the generation of methane and increasing the hydrogen production efficiency at an industrial level.
- The catalyst is able to mantain high catalytic activity after exposure to a high operating temperature.